If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100y^2+20y-1=0
a = 100; b = 20; c = -1;
Δ = b2-4ac
Δ = 202-4·100·(-1)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{2}}{2*100}=\frac{-20-20\sqrt{2}}{200} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{2}}{2*100}=\frac{-20+20\sqrt{2}}{200} $
| x^2(x+9)=7 | | 4(x+2)+2x-1=4(x+6)+35-2x | | 3(x-2=30 | | y+36/10=6 | | -34-4v=-2(v+6) | | −4(−x−2)−2x+5=−4(−x−2)−2x+5= 3131 | | 4(y)-2(1)=28 | | 12=6+2r | | 4(x-1)-2(x-1)=28 | | 4(x+2)+2x-1=4(x+6)+35+2x | | 9+5(y-4)=20 | | u+-18=-1 | | -4(1+8m)=-35-m | | 11x+35=14x-7-25x=28 | | 4(3)-2(x)=28 | | -25/8+3/4=k | | g/2+3=5 | | 4=-3x+6 | | 2p+8=8-2p | | 27n+156=168 | | 11x+35=14x-725x=28 | | 4-(x-3)=17 | | -2.3+n=7 | | 117=d/17 | | x/2−10=30 | | 2(3n+6)=47 | | 9=2(4x-13)-3x | | x/25-20=-10 | | 1=X3=y | | 9x+5+14x-3=90 | | 62/3w+19=21/3 | | 11r-4=2r+68 |